Apple 1l

—

NP,

—

PN ———

¢

Acknowledgements

The Apple lll Pascal system is based on UCSD Pascal. “UCSD
PASCAL” is a trademark of the Regents of the University of California.
Use thereof in conjunction with any goods or services is authorized
by specific license only and is an indication that the associated
product or service has met quality assurance standards prescribed by

the University. Any unauthorized use thereof is contrary to the laws of
the State of California.

Contents iii

§w,w,,,, 3

1 SOS Calls From Pascal | 1

-
ONW—- 000N W=

Contents of the Disk
SOS File Calls
The Console
Writing to a Printer
SOS Device Calls
SOS Memory Management, Utility, and Additional Calls
Some Hints
Conclusion
Table 1: SOS File Management Calls
Table 2: SOS Device Calls
Table 3: SOS Memory Management, Utility, and
Additional Calls

2 SOSIO Pascal Code 13

st e R o D mower nee

The Apple Il Sophisticated Operating System (SOS) has a generalized
command set to access attached devices, manage memory and the
event. mechanism, and take advantage of other features of the
machine. This supplement describes a set of routines, SOSIO,
available on the disk that came with this manual. These routines allow
direct access to SOS calls from a Pascal program.

By making direct system calls to SOS, you can expand the potentially
limiting nature of Pascal’s input and output (I/O) constructs. You

can also take advantage of SOS device independence and of the
Apple IIl's large memory. As you can see in some of the examples in
Chapter 6 of the Pascal Technical Reference Manual, using SOS
calls you can determine the memory available on the system and
allocate space beyond the 64K bytes permitted by the Pascal stack-
heap. Other calls may be used to manage the SOS event system, deal
with the system clock, and restart the system. Detailed descriptions of
the SOS calls may be found in the SOS Reference Manual.

Contents of the Disk

Two forms of the Pascal interface to SOS are provided on the
enclosed disk. One provides a set of Pascal procedures; the other is
similar, but provides the routines as Pascal functions returning TRUE
if the call succeeds (with a return code of zero) and FALSE if it fails (a
non-zero return code). The function interface always returns TRUE for
SOS calls that do not generate a return code.

2 Pascal Technical Reference Manual #:

¢

The function version is the one used in the examples and has the unit
name SOSIO. A linked code file, SOSIO.CODE, is included on the disk.
The procedure version has the unit name PSOSIO.

You may find it worthwhile to include only the routines you need.
Thus, source code is provided. To conserve space in the compiled
and linked unit as well as on the disk, comments are omitted in the
Pascal source code for the units. These “interface only” units are
named ISOSIO.TEXT and IPSOSIO.TEXT. A listing of the fully
commented function version of the unit is included in this
supplement.

The disk also has the source code for the assembly language routines
that actually make the SOS calls. The main file that must be
assembled is ASMSOS.TEXT. Note that the file ASMSOS has a flag
that tells whether the version being assembled is the function or
procedure version.

To build a function version of SOSIO, set FUNCTION to be 01 in
ASMSOS and assemble it. Compile ISOSIO. Link the files with the
ISOSIO object code as the host file and the ASMSOS object code as
the only library file. To build a procedure version, PSOSIO, set
FUNCTION to 00 in ASMSOS before assembling and compile
IPSOSIO.

The disk also includes the source code to two programs printed in
Chapter 6 of the Pascal Technical Reference Manual.
DEVTRAN.TEXT is the program that translates between Pascal unit
numbers and SOS device names and numbers. Compile it (with
SOSIO present) to a file DEVTRAN.CODE. Then, either install SOSIO
into the SYSTEM.LIBRARY, or make SOSIO the program library by
naming it DEVTRAN.LIB.

Two files make up the program illustrating the use of SOS Extended -
Memory: XMOVE.TEXT contains the assembly language;
USEXMOVE.TEXT contains the Pascal source code. Assemble XMOVE
to XMOVE.CODE; compile USEXMOVE to USEXMOVE.CODE (with
SOSIO.CODE present). Link the two files with USEXMOVE as the host
file and XMOVE as the library file. Again, SOSIO.CODE must be either
placed in the SYSTEM.LIBRARY or made into a program library for
the program to work.

SOS File Calls

SOS File Calls

Table 1 lists the SOS file management calls. The following paragraphs
describe some possible uses of these calls from Pascal programs.
Note that the routines described here are executable only on the
Apple lll using SOS-formatted disks, even though Apple Il Pascal
allows you to read UCSD Pascal-formatted disks as well as edit,
compile, and link source text that was created on the Apple Il UCSD
Pascal system.

Table 1. SOS File Management Calls

Call Description

SOS_ Create Creates a file on a block device and
preallocates blocks for a new file, if
desired.

SOS_Destroy Removes a file from a blocked device.

SOS_Rename Changes the name of a file.

SOS_ Set_Info Defines the directory information to be

associated with a specified file.

SOS_ Get_Info Returns the directory information of a
file.
SOS_Volume Returns the volume name, total blocks in

use, and total number of free blocks for
any block device.

SOS_ Set_ Prefix Sets the system prefix pathname. This is

not the Pascal prefix.

SOS_ Get_ Prefix : Returns the current system prefix
pathname.

SOS_Open Opens any SOS file, including devices

such as the console.

Pascal Technical Reference Manual

&

Table 1. SOS File Management Calls (cont.)

Call

SOS_New_Line

SOS_Read

SOS_S_Read

SOS_ Write

SOS_S_ Write

SOS_ Close

SOS_ Flush

SOS_Get_B_Mark

Description

Disables or enables and sets the “read
until” character for the specified SOS
file.

Reads from a specified file.

Reads from a specified file into an
indexed buffer. Useful for reading in a
Pascal string variable after turning off
range checking. The same as SOS_ Read
except that the buffer read into is
indexed by a specified number of bytes.

Writes to a specified file.

Writes to a specified file from an indexed
buffer. Useful for writing string variables.

Closes the specified file. If the passed
reference number is 0, all user files are
closed.

Writes out any information currently
buffered by SOS to the specified file.
Works in a similar fashion to SOS_Close
when a @ reference number is passed to
it. This gives the applications
programmer the ability on demand to
write out to disk all SOS file buffers.

Gets the current file mark rounded up to
the closest block number.

SOS File Calls

¢

Table 1. SOS File Management Calls (cont.)

Call Description

SOS_ Set_B_Mark Sets the current file position to the
passed block number.

SOS_Get_B_EOF Gets the current EOF rounded up to the
closest block number.

SOS_Set_B_EOF Sets the EOF to the passed block
number.

SOS_ Get_Mark Gets the current file mark and returns the

low 16 bits in “Low” and the high order
8 bits (of the 24 bit mark) in “Hi.”

SOS_ Set_Mark Sets the mark to the 24 bit quantity
passed.

SOS_ Get_EOF Gets the current EOF and returns the
24 bit quantity in “Low” and “Hi.”

SOS_Set_EOF Sets the EOF to the 24 bit quantity
passed.

SOS_Get_Lev Returns the value of the system file level.

All SOS_ Opens assign this level to files
opened until it is changed. All

SOS_ Close and SOS_ Flush operations
on multiple files will operate only on
those files that were opened with a level
greater than or equal to the current level.

SOS_Set_Lev Changes the current value of the system
file level.

6 , Pascal Technical Referehcé Manual

The Console

The Apple lll text mode is supported by the SOS console driver.
Accessing the console driver directly rather than using Pascal read
and write routines, you can mix commands to the driver (described in
the Standard Device Drivers Manual) along with text. With a single
call to SOS, you can turn off the cursor, clear the screen, position the
cursor at any X,Y position, write a line of data, set a viewport, scroll
newly written text up one line, and turn on the cursor. (A viewport is
an arbitrary rectangular area that can be defined by a program.)
Because the contents of any viewport can be saved and then restored,
error messages can temporarily overlay other information; the
previous data can then be restored in a single command request to
the console driver.

Writing to a Printer

With Apple Il Pascal, data is passed to a printer on a character-by-
character basis. This means that data passed to a printing device by a
Pascal write or unitwrite statement is broken down into many SOS
calls. This takes many times more SOS overhead than a direct request
to a SOS printer driver. The performance improvement you get by
using a SOS_ Open and then SOS_ Write calls to write to a printer is
clear.

Apple lll Pascal uses 1100 bytes (550 words) of buffer space in the
data space for each file that is opened, including any character device
such as a printer or the console. A buffer is thus expected as a
parameter to SOS_ Open. However, because SOS uses this buffer
only with block devices, a dummy variable may be passed as the
buffer parameter when accessing character devices. This could save
stack and heap space when you use direct SOS calls to output to a
printer or other character device, compared to the amount of space
used by Pascal I/O procedures.

On a block device, the buffer area passed as a parameter to

SOS_ Open must not be touched by other parts of the program and
must always be available while the file is open. Because of this
requirement, the usual scope rules for Pascal must be rigorously
followed to keep Pascal from deallocating a SOS file buffer before the
file is closed. Failing to do this will result in a fatal SOS error, SYSTEM
FAILURE $0F, “Invalid buffer number.”

S_OS Device Calls

¢

The file type, modification date and time, and other attributes can be
modified for every SOS file by means of a SOS_ Set_ Info call. Since
SOSIO calls communicate directly with SOS, no Pascal preprocessing
to convert control characters, such as the DLE and CONTROL-C,
takes place on input or output. (See the section on Device I/O in the
Pascal Programmer’s Manual, Volume 1.) This reduces the amount of
processing and ensures that you write out any control characters you
intended.

SOS Device Calls

Table 2 lists the SOS device calls. Given a SOS device name, you can
use SOS_ Get_ D_ Num to translate the name into a SOS device
number, which may be used as a parameter to other SOS calls.
SOS_ D_ Info may be used to get information concerning configured
devices. SOS_ D_ Status and SOS_ D_ Control may be used to get
status information concerning a device and to issue control calls.
Consult the Standard Device Drivers Manual or the descriptions of
other device drivers for parameters for specific devices.

Table 2. SOS Device Calls

Call Description

SOS_D_ Status Issues a device status request and
returns the results for the specified
device.

SOS_D_ Control Issues a device control request to any
SOS device.

SOS_Get_D_Num Returns the SOS device number for the

named device.

SOS_D_Info Returns device information for the
specified device, if it is configured.

Pascal Technical Reference Manual =~ -

¢

SOS Memory Management, Utility, and
Additional Calls

Table 3 lists the SOS memory management and utility calls, as well as

some additional routines. You have already seen—in Chapter 6 of the

Pascal Technical Reference Manual—examples of the use of memory
management calls to take advantage of the large memory available on
the Apple lll.

Table 3. SOS Memory Management, Utility, and Additional Calls
Call Description

SOS_Request_ Seg Requests a certain type and size of
memory segment.

SOS_Find_Seg Finds a memory segment of a certain
type, if possible. If not, the size of the
largest free segment is returned along
with an error indication.

SOS_ Change_ Seg Changes the starting and ending
addresses of the segment by adding or
releasing the specified number of pages,
if possible. If not, an error indication is
returned along with the maximum
allowable page count. ..

SOS_G_Seg_Info Returns the beginning and ending
locations, size in pages, and ’
identification code of the specified

segment.

SOS_G_Seg_Numb Returns the segment number of the
segment, if any, containing the specified
address.

SOS_Rel_Seg Releases the segment with the specified

segment number, if any.

SOS Memory Management, Utility, and Addi_tlonal Calls

¢

Table 3. SOS Memory Management Utility, and Additional Calls (cont.)
Call Description

SOS_S_Fence ~ Sets the value of the user event fence to
the specified value.

SOS_G_Fence Returns the value of the user event fence.

SOS_ Seét_Time Sets the system date/time and resets the
clock chip, if present.

SOS_Get_Time Returns the current system date/time.

SOS_Get_ Analog Reads the analog and digital inputs from

an Apple lll Joystick connected to port A
or B on the back of the Apple lil.

SOS_ Terminate Terminates the currently executing
program and interpreter.

Up_ Load Not a SOS call. Uploads the SOS
character set from $C00-$FFF into the
passed buffer.

At_Sign Not a SOS call. Returns the address of a
Pascal variable as an integer.

The SOS utility calls deal with the system clock/calendar, the event
fence, the analog input ports, and other system resources.

Additional routines are provided to Up_ Load the current character
set; an application may then download a new character set and, upon
termination, restore the original with a console SOS_ D_ Control call
with a control code 16.

10 Pascal Technical Reference Manual

Some Hints

Because Apple lll Pascal allows assembly language reference (VAR)
parameters to bypass type-checking, you can use this feature to allow
greater flexibility in defining output parameter data types. For
example, any Pascal data type can be passed as the argument to any
reference parameter in the assembly language routines described
here. This lets the assembly language routine overwrite whatever
variable has been passed as a call by a reference parameter. A
possible side effect is that you can easily pass the wrong variable to
any reference parameter and have the assembly language routine
place the returned value in whatever data type you’ve just passed it.
This could cause your program to crash.

In the Apple lll Pascal system, a segment that contains external (that
is, assembly language) routines is not allowed to cross any boundary
between 32K-byte banks. Therefore, the Pascal system may leave
unusable holes in memory when loading units containing assembly
language routines. You may avoid this by making use of an intrinsic
unit version of the SOS Calls.

When compiling your main program, use the “{$NOLOAD+}”
compile-time option as the first statement. Then add a “{$R SOSIO}”
compile-time command after the main procedure’s BEGIN statement.
The Pascal interpreter will load the SOS unit first, allowing your
P-code only Pascal program to cross any bank boundary encountered
further along in the loading process.

Although the SOS calls are presented as Apple Il Pascal intrinsic
units, the declarations can be incorporated as needed by suffixing an
“External;” after each function or procedure declaration and
compiling them along with any Pascal main program. However, a
SOS_ Data area must always be included because all the routines use
it as the SOS parameter block-data area. Additionally, various
assembly language routines must be used in pairs, since they share
code. They are:

Conclusion . 11

¢

SOS_ D_ Status and SOS_ D_ Control

SOS_ Set_ Info and SOS_ Get_ Info

SOS_ Read and SOS_ S_ Read

SOS_ Write and SOS_ S_ Write

SOS_ Get_ B_ Mark and SOS_ Get_ B_ EOF
SOS_ Set_ B_ Mark and SOS_ Set_ B_ EOF
SOS_ Get_ Mark and SOS_ Get_ EOF

SOS_ Set_ Mark and SOS_ Set_ EOF

Linking the Pascal program with the necessary assembled external

routines would allow it to be run without having a SYSTEM.LIBRARY
or program library on-line.

Conclusion

By using SOSIO in your Pascal programs, you will gain flexibility and
power in addition to a possible performance improvement.

The use of SOSIO can also result in significant memory savings. The
complete set of routines when assembled as Pascal procedures is:

Device calls 0.2K
File calls 1.4K
Utility calls 0.2K
Memory calls 0.3K
Additional calls 0.1K
Data 0.1K

Total 2.3K

These totals may be reduced through selective assembly, if necessary.
Note that the complete set of file-processing routines is slightly larger
than 1K bytes of code. For each Pascal file opened by calling Reset or
Rewrite, a mandatory 1K-byte buffer is reserved. Therefore, the entire
SOS_ 10 file package fits into the space saved using the package to
write to just one nonblocked device. Through judicious use of the
memory management routines, you can also gain access to far
greater memory than would be possible on the Pascal system alone.

12 Pascal Technical Reference Manual

SOSIO Pascal C;Jd |

This section contains a fully commented listing of the Pascal function
version of the SOSIO Pascal code.

SOS Interface--February 1, 1983 Version 1.1

{$CC Copyright 1981, 1982, 1983 Apple Computer Inc.}
{$SETC Intrinsic_Unit += TRUE}

{ File SOSIO }

{Function interface version of S0SIO0:

If the SOS call generates a return code, the value of the SOSIO function is
TRUE if the return code is P; it is FALSE if the return code is non-zero.

If the SOS call does not generate a return code, the value of the SOSIO
function is always TRUE.}

Unit SOSIO;

{$IFC Intrinsic Unit}
Intrinsic CODE 58;
{SENDC}

Interface

{ Set to TRUE to compile SOS calls for: }

{$SETC SOS_File IO := TRUE}
{$SETC SOS Device 10 := TRUE}
{$SETC SOS_Utility 10 := TRUE}
{$SETC SOS_Memory Mgt := TRUE}
{$SETC SOS_Plus_IO := TRUE}

14 Pascal'TechniCaI Reference Manual

t

SOS Device Calls--February 1, 1983 Version 1.1

{ Device management SOS calls }
{$IFC SOS_Device 10}

Function SOS_D_Status (DevNumb, StatusCode : Integer;
Var StatusList, RetCode) : Boolean;

{ 1Issues a device status request and returns the status from any SOS device. }
{ 1Input Values :

DevNumb ¢ The SOS device number to perform the status/control request.
This is obtained through the SOS_Get D Num call.
StatusCode : The status code to be performed.

Output Values :

StatusList : A buffer in which to return a status request list. The
length of the buffer is device dependent.

RetCode ¢ An integer to contain the SOS return code (a zero means no
errors).

}

Function SOS_D Control (DevNumb, ControlCode : Integer;
Var ControlList, RetCode) : Boolean;

{ Issues a device control request to any SOS device. }

{ Input Values :
DevNumb t The SOS device number to perform the status/control request.
This is obtained through the SOS Get D Num call.

ControlCode: The control code of the action to bé—ﬁgtformed.
ControlList: The optional control list for the specific control code.

Output Values :

RetCode ¢ An integer to contain the SOS return code (a zero means no
errors).

}

Function SOS_Get D Num (Var DevName, DevNumb, RetCode) : Boolean;
{ Returns the S0S device number for a configured device. }

{ Input Values :

DevName ¢ A Pascal string with a maximum length of 15 characters
that contains the device name.

Output Values :

DevNumb ¢ The SOS device number is returned as on integer value
from 1 to 18.

¢

SO0S Device Calls--February 1, 1983 Version 1.1

RetCode : An integer to contain the SOS return code (a zero means no
errors).

}

Function SOS_D Info (DevNo : Integer; Var DevName, DevList, RetCode)
: Boolean;

{ Returns device information (for configured devices), for the passed device
number. }

{ Input Values :

DevNo ¢ A SOS device number from § to 18. All other numbers
are INVALID.

Output Values :

DevName : The SOS device name corresponding to the passed DevNo.
DevList ¢ The 11 byte SOS device information list:

Byte @ ¢ Slot number

Byte 1 : Unit number

Byte. 2 : Device type

Byte 3 : Device subtype

Byte 4 ¢ Reserved

Bytes 5 & 6 : Blocks available
Bytes 7 & 8 : Manufacturing ID
Bytes 9 & 1f: Version number .
(Use a packed array [@..10] of char or @..255)

RetCode : An integer to contain the SOS return code (a zero means no
errors).
}
{$SENDC}

16 Pascal Technica‘lv Reference Manual

¢

S0S File Calls-~February 1, 1983 Version 1.1

{ File management SOS calls }

{$IFC SOS_File 10}

Function SOS_Create (Var Pathname; FileID, AuxID, Storage, EOFBlk : Integer;
Var RetCode) : Boolean;

{ Creates a file on a block device with the specified pathname. }

{ Input Values :

Pathname ¢ A Pascal string that is a valid SOS pathname.

FileID ¢ The SOS file identification code to associate with the
created file.

AuxID : The SOS auxiliary identification code.

Storage ¢ The storage type to create. One is a standard file, thirteen
is a subdirectory file.

EOFBlk ¢ The number of blocks to preallocate for the file on a block

device. The range is P to 32767 blocks.
Output Values :

RetCode : An integer to contain the SOS return code (a zero means no
errors).
}
Function SOS_Destroy (Var Pathname, RetCode) : Boolean;
{ Deletes the file specified by the passed pathname. }
{ Input Values :
Pathname ¢ The pathname of the file to destroy.
Output Values :
RetCode ¢ An integer to contain the SOS return code (a zero means no
errors). :
}
Function SOS_Rename (Var OldPath, NewPath, RetCode) : Boolean;
{ Renames the OldPath to the NewPath-name. }

{ Input Values :

O0ldPath ¢ A Pascal string pathname to change FROM.
NewPath ¢ A Pascal string pathname to change TO.

Output Values :

RetCode ¢ An integer to .contain the SOS return code (a zero means no
errors).

}

Function S0S_Set_Info (Var Pathname, FileList; ListLeng : Integer;

SOS File Calls--February 1, 1983 Version 1.1

Var Retcode) : Boolean;

{ Sets the file information specified by the passed pathname and ListLeng. }

{ Input Values :

PathName ¢ The pathname to set the file information.
File List : The up to 15 byte list (the length SOS uses is determined by
ListLeng:
Byte § -~ The file attribute bits. Bit 7 set is destroy OK; bit
6 set is rename OK; bit 1 set is write OK; bit § is read OK.
Byte 1 - The file identification code.
Bytes 2&3- The auxiliary identification code.
Bytes 11 to
14 - The packed values for the date and time stamp: Year (..99),

ListLeng :

Output Values :

RetCode

}

Month (1..12), Day (1..31), Hour (1l..24), Minute (1..6ﬂ),
stored in four bytes in the following fashion.

(high byte) (low byte)
7 6 54 3 2 1 9|7 65 4 3 2 19
+ - +
pate | | | L L L L]
| Year | Month | Day |
(high byte) (low byte)

7 6 54 3 2 1 9|7 6 5 4 3 219

Hour | Minute

Time

—_——

<
1

o+

b

The file attributes to change. One is only FileAttr, three
is through FilelD, fourteen is through AuxID, and fifteen
is everything.

: An integer to contain the SOS return code (a zero means no

errors).

Function SOS_Get_ Info (Var Pathname, Filelist; ListLeng : Integer;

Var RetCode) : Boolean;

{ Gets the file information specified by the passed pathname. }

{ Input Values :
PathName :

ListLeng

The pathname of the file to get the information from.

: The length of the file information list to be returned

by SOS (as per the FileList definition).

}

}

{

Output Values :

FilelList :

RetCode :

¢

SOS File Calls--February 1, 1983 Version 1.1

The file information returned on the file with the pathname
passed:

Byte § : File attribute

Byte 1 : File identification

Byte 2 & 3 : (Low,High) Auxiliary identification
Byte 4 : Storage type

Bytes 5..8 : (Low,High) EOF in bytes
Bytes 9 & 19 : Blocks currently used
Bytes 11..14 : (Low,High) Modification date and time

(Use packed array [f..14] of char or $..255)

An integer to contain the SOS return code (a zero means no
errors).

Function SOS_Volume (Var DevName, VolName, TotalBlks, FreeBlks, RetCode)

: Boolean;

Gets volume information on the device specified by the passed DevName. }

Input Values :

DevName :

Output Values :
VolName
TotalBlks :
FreeBlks

RetCode :

A Pascal string containing the device name; maximum of
15 characters in length, '

: The SOS volume name returned in a Pascal string 15 bytes

long.
The total number of blocks on the volume, returned
as an UNSIGNED integer value (§ to 65535).

: The number of available blocks on the volume, returned

as an UNSIGNED integer value (§ to 65535).
An integer to contain the SOS return code (a zero means no
errors).

Function SOS_Set Prefix (Var Prefix, RetCode) : Boolean;

Sets the system prefix (NOT the Pascal prefix!) to the passed prefix

string. }
Input Values :

Prefix :

Output Values :

A Pascal string up up to 255 characters long containing
the system prefix value. Note that a "/" is automatically
added to the end of the system prefix.

- SOSIO Pascal Code

e
5

¢

S0S File Calls--February 1, 1983 Version 1.1
RetCode : An integer to contain the SOS return code (a zero means no
errors).

}

Function SOS_Get Prefix (Var Prefix; Length : Integer; Var RetCode)
: Boolean;

{ Gets the current system prefix (NOT the Pascal prefix!). }
{ Input Values :

Prefix : A Pascal string[n] to receive the current system prefix.
Length : The maximum length of the string.

Output Values :

RetCode : An integer to contain the SOS return code (a zero means no
errors).

}

Function SOS_Open (var Path; ReqType, Pages : Integer; Var SysBuf, RefNumb,
RetCode) : Boolean;

{ Opens a file with the specified pathname. }

{ Input Values :

Path : A Pascal string containing the pathname of the file to
be opened.
ReqType : The manner in which to open the file, e.g. § = file's
attribute, 1 = read only, 2 = write only, 3 = read/write.
Pages : The number of user supplied pages pointed to by the SysBuf

parameter. Note that passing a ® means that SOS finds its
own buffer. The maximum value is 4; each page is 256 bytes
long. If a P is passed, then SOS ignores the SysBuf
parameter, and finds its own buffer.

SysBuf : This must be a 1§24 byte buffer for SOS to use for the
duration of the open. CAUTION : You cannot use OR deallocate
this buffer while the file is open. Use a packed array
[P..1023]) of char. If the file being opened is not on
a blocked device (e.g. a printer, the console), the SysBuf
pointer is ignored by SOS.

Output Values :

RefNumb : This is the SOS file reference number returned as an integer
value, to be used in SOS_Read's and SOS_Write's to the file.

RetCode : An integer to contain the SOS return code (a zero means no
errors).

Function SOS_New Line (RefNumb, Flag : Integer; NewCh : Char; Var RetCode)
¢ Boolean;

¢

SOS File Calls--February 1, 1983 Version 1.1

{ Enables/disablés the "newline" read mode (i.e. stops a read on the specified
NewCh when enabled). }

{ Input Values :

RefNumb : The reference number of the file.

Flag t P..127 is disable; 128..256 is enable the newline mode.

NewCh : the character to be used as a newline character (terminates
the read).

Qutput Values :
RetCode : An integer to contain the SOS return code (a zero means no
errors).

}

Function SOS_Read (RefNumb : Integer; Var InputBuf; BytesReq : Integer;
Var BytesRead, RetCode) : Boolean;

{ Reads from the file specified by reference number. }

{ Input Values :

RefNumb ¢ The reference number returned from the successful SOS_Open
request.

BytesReq ¢ The number of bytes to read as an UNSIGNED integer value
(9..65535).

Output Values :
InputBuf ¢ The buffer to read into. Use a packed array [P..??] of char. -
BytesRead : The actual number of bytes read into InputBuf.
RetCode : An integer to contain the SOS return code (a zero means no
errors).

}

\'Function S0S_S_Read (RefNumb : Integer; Var InputBuf; OffSet,
BytesReq :Integer; Var BytesRead, RetCode) : Boolean;

{ The Same as SOS_Read, except that the buffer read into is indexed by OffSet
bytes (e.g. for a read into a string).
}
Function SOS_Write (RefNumb : Integer; Var OutputBuf; NumbBytes : Integer;
Var RetCode) : Boolean;
{ Writes to the file specified by reference number. }
{ Input Values :

RefNumb : The SOS reference number returned from the successful

¢

SOS File Calls--February 1, 1983 Version 1.1

SOS_Open request.

OutputBuf : The Pascal buffer to write to the file, a packed array should
be used.

NumbBytes : The number of bytes to write from BufPtr.

Output Values :

RetCode : An integer to contain the SOS return code (a zero means no
errors).

}

Function SOS_S Write (RefNumb : Integer; Var OutputBuf; OffSet,
NumbBytes : Integer; Var RetCode) : Boolean;

{ The same as SOS_Write, except that the write buffer is indexed by OffSet
bytes.}

Function SOS_Close (RefNqu) integer; Var RetCode) : Boolean;
{ Closes the file specified by reference number. }
{ 1Input Values :
RefNumb : The reference number returned from the SOS_Open request.

Output Values :

RetCode : An integer to contain the SOS return code (a zero means no
: errors).

}
Function SOS_Flush (RefNumb : Integer; Var RetCode) : Boolean;

{ The SOS output buffer associated with the file specified by the passed
reference number is immediately written to the file. }

{ Input Values :
RefNumb : The reference number returned from the SOS_Open request.
Output Values :

RetCode : An integer to contain the SOS return code (a zero means no
errors).

}

Function SOS_Get B Mark (RefNumb : Integer; Var BlockNumb, RetCode)
: Boolean;

{ Gets the current mark, or position of the file specified by the passed
reference number, rounded up to the nearest 512 byte block. }

{ 1Input Values :

Pascal Technical Reference Manual

RefNumb :

Output Values :
BlockNumb :

RetCode :

t

SOS File Calls--February 1, 1983° Version 1.1

The SOS file reference number returned by the SOS Open
request.

The mark rounded up to the nearest 512 byte block number.,
Use an integer for the §..32767 value range.

An integer to contain the SOS return code (a zero means no
errors).

Function SOS_Get_ B_EOF (RefNumb : Integer; Var BlockNumb, RetCode)

¢ Boolean;

{ Gets the current EOF of the file specified by the passed reference number,
rounded up to the nearest 512 byte block. }

{ Input Values :

RefNumb :

Output Values :
BlockNumb
RetCode :

}

The SOS file reference number returned by the SOS_Open
request.

¢ The EOF rounded up to the nearest 512 byte block number.

Use an integer for the P..32767 value range.
An integer to contain the SOS return code (a zero means no
errors).

Function SOS_Set B Mark (RefNumb, Base, BlockNumb : Integer; Var RetCode)

¢ Boolean;

{ Sets the current mark of the specified file to the 512 byte block number

specified. }

{ Input Values :

RefNumb H
Base H
BlockNumb

Output Values :
RetCode :

}

The SOS file reference number returned by the SOS_Open
request.

Where to set the mark relative to : § = beginning of the
file; 1 = end of the file; 2 = positive from the current
position; 3 = negative from the current position.

: A integer block number from P to 32767 to set the mark to.

An integer to contain the SOS return code (a zero means no
errors).

Function SOS_Set_B EOF (RefNumb, Base, BlockNumb : Integer; Var RetCode)

: Boolean;

B Sl e

- SOSIO Pascal Code

¢

SOS File Calls—-February 1, 1983 Version 1.1

{ Sets the current EOF of the specified file to the 512 byte block number
specified. }

{ Input Values :
RefNumb : The SOS file reference number returned by the SOS_Open
request. .
Base : Where to set the mark relative to : @ = beginning of the
file; 1 = end of the file; 2 = positive from the current

position; 3 = negative from the current position.
BlockNumb : A integer block number from P to 32767 to set the EOF to.

Output Values :

RetCode : An integer to contain the SOS return code (a zero means no
errors).

}
Function SOS_Get Mark (RefNumb : Integer; Var Low, Hi, RetCode) : Boolean;

{ Gets the mark of the specified file as the byte quantity passed as two
UNSIGNED 16 bit integers. }

{ Input Values :
RefNumb : The file reference number returned from the SOS_Open request.

Output Values :

Low,Hi : The mark returned as a 24 bit UNSIGNED quantity.
RetCode : An integer to contain the SOS return code (a zero means no
errors).

}

Function SOS_Get_ EOF (RefNumb ¢ Integer; Var Low, Hi, RetCode) : Boolean;

{ Gets the EOF of the specified file as the byte quantity passed as two
UNSIGNED 16 bit integers. }

{ Input Values :
RefNumb : The file reference number returned from the SOS_Open request.

Output Values :

Low,Hi : The EOF returned as a 24 bit UNSIGNED quantity.
RetCode : An integer to contain the SOS return code (a zero means no
errors).

Function SOS_Set_ Mark (RefNumb, Base, Low, Hi : Integer; Var RetCode)
: Boolean;

€

SOS File Calls--February 1, 1983 Version 1.1

Sets the mark of the specified file to the byte quantity passed as two
UNSIGNED 16 bit integers. }

Input Values :

RefNumb : The file reference number returned from the SOS_Open request.

Base : Where to set the mark relative to : § = beginning of the
file; 1 = end of the file; 2 = positive from the current
position; 3 = negative from the current position.

Low,Hi : The mark as a 24 bit UNSIGNED quantity. The high byte
of "Hi" MUST BE § (i.e. Hi = P..255).

Output Values :

RetCode : An integer to contain the SOS return code (a zero means no
errors).

Function SOS_Set EOF (RefNumb, Base, Low, Hi : Integer; Var RetCode)

: Boolean;

Sets the EOF of the specified file to the byte quantity passed as two
UNSIGNED 16/bit integers. }

Input Values :

RefNumb : The file reference number returned from the SOS_Open request.

Base : Where to set the mark relative to : § = beginning of the
file; 1 = end of the file; 2 = positive from the current
position; 3 = negative from the current position.

Low,Hi ¢ The EOF as a 24 bit UNSIGNED quantity. The high byte
of "Hi" MUST BE @ (i.e. Hi = §..255).

Output Values :

RetCode : An integer to contain the SOS return code (a zero means no
errors).

Function SOS_Set_Lev (Level : Integer; Var RetCode : Integer) : Boolean;

{ Sets the user event fence priority number; }
Input Value :

Level : The new file level (valid input is 1..3).
Output Value:

RetCode : An integer to contain the SOS return code (a zero means no
errors).

¢

SOS File Calls--February 1, 1983

Function SOS_Get_Lev (Var Level : Integer) : Boolean;
{ Gets the current file level. }
{ Output Value :

Level : The current file level.

}
{$SENDC}

Version 1.1

Pascal Technical Reference Manual

¢

SO0S Utility Calls--February 1, 1983 Version 1.1

{ Utility management SOS calls }

{$IFC sOS_Utility IO}
Function SOS_S Fence (Priority : Integer) : Boolean;

{ Sets the user event fence priority number. }
{ Input Value :

Priority : The new user event fence priority (§..255).

}

Function SOS_G_Fence (Var Priority : Integer) : Boolean;
{ Gets the current user event fence priority number. }

{ Output Value :

Priority : The current user event fence priority.

}

Function SOS_Set_Time (Var Time) : Boolean;

{ Sets the system date/time, and resets the clock chip if one is present. }
{ Input Value:

Time ¢ An 18 character Pascal string to set the system date and
time. Note that SOS 1.1 keeps the date and time over
system cold boots when the clock chip is NOT present. All
S80S files are automatically date/time stamped with this
setting. The string order is:

yyyy mm dd w hh nn ss uuu

(year) (month) (day) (day of week) (hour) (min.) (sec.) (msec.)
}

Function SOS_Get_Time (Var Time) : Boolean;
{ Gets the current.system date/time. }
{ Output Value :
Time ¢ The current time is returned as an 18 character Pascal
} string of ASCII digits (see above ordering).

Function SOS_Get_ Analog (Mode : Integer; Var Value, RetCode) : Boolean;

{ Reads the analog and digital inputs form an Apple III Joystick connected
to port A or port B. }

{ 1Input Values :

Mode :

Output Values :

Value

RetCode

}

Function SOSﬂ?erminate :

¢

SOSIO Pascal Code | 27

SOS Utility Calls--February 1, 1983

The port and the the

= Port
Port
Port
Port
Port
Port
Port
Port

NouUmsrLwNN-S
nowononw non

buttons
buttons
buttons
buttons
buttons
buttons
buttons
buttons

All other values are

kind of read.

only

and X-axis
and Y-axis
and X&Y-axis
only

and X-axis
and Y-axis
and X&Y-axis

INVALID.

: The port value as specified in the mode passed:

For the buttons P = False; 255 = TRUE.

Byte § = Button 9
Byte 1 = Button 1
Byte 2 = X-axis
Byte 3 = Y-axis

Use a packed array [f..3] of §..255.

errors).

Boolean;

{ Terminates the currently executing program and interpreter. }

{SENDC}

Version 1.1

: An integer to contain the SOS return code (a zero means no

.28 Pascal Technical Reference Manual

¢

SOS Memory Mgt.--February 1, 1983 Version 1.1
{ SOS Memory Management calls--use with care...}
{$IFC SOS_Memory Mgt}

Function SOS_Request_ Seg (Base, Limit, Segld : Integer; Var SegNumb,
RetCode) : Boolean;

{ Requests a certain type and size of memory segment from SOS.}

{ Input Values :

Base : The segment address of the beginning of the request.
Limit : The segment address of the end of the request.
Segld : The type of segment being requested ($2f to $7F is user).

Output Values :

SegNub : The segment number that SOS uses to keep track of segment
with.

RetCode : An integer to contain the SOS return code (a zero means no
errors).

}
Function SOS_Find Seg (SrchMode, Segld : Integer; Var Fivelnts) : Boolean;

{ Finds a memory segment of a certain type--if possible. If not, then
the largest free segment is returned along with a SEGRQDN ($El) error.}

{ Input Values :
SrchMode : § = may not cross a 32K bank boundary; 1 = may not cross
more than one 32K bank boundary; 2 = may cross any number
of bank boundaries.
Segld : The type of segment being requested ($20 to $7F is user).
FiveInts.Page : The number of pages to find for the segment (see Fivelnts
Pascal data type).

Output Values :
The returned record should have the following type :

Fivelnts = Packed Record of
Pages : Integer; (* The largest number of pages *)
Base : Integer; (* The first page number *)
Limit : Integer; (* The last page number *)
SegNumb : Integer; (* The SOS segment number%*)
RetCode : Integer; (* The SOS return code *)
End;

}

Function SOS_Change_Seg (SegNumb, ChgMode : Integer; Var Pages,
RetCode) : Boolean;

{ Changes either the base or limit segment address of the specified

}

{

}

SOSIO. Pascal Code

¢

S0S Memory Mgt.--February 1, 1983 Version 1.1

segment by adding or releasing the number of pages passed in the
pages parameter. If the request is not possible, then SEGRQDN ($E1)
is returned and the maximum allowable page count is returned in Pages.}

Input Values :

SegNumb : The segment number of the memory segment to be changed.

ChgMode : § = Release from the base; 1 = add before the base; 2 =
add after the limit; 3 = release from the limit.

Pages - : The number of pages to add or release from the segment.

Output Values :

Pages : The maximum number of pages that can be added or removed.
RetCode : An integer to contain the SOS return code (a zero means no
errors).

Function SOS_G_Seg Info (SegNumb : Integer; Var Fivelnts) : Boolean;

Returns the beginning and ending locations,.size in pages, and id code
of the segment specified by SegNumb.}

Input Values :
SegNumb : The SOS segment number.
Output Values :
The returned record should have the following type :

Fivelnts = Packed Record of
Base : Integer; (* The first page number *)

Limit : Integer; (* The last page number *)
Pages : Integer; (* The number of pages *)

Segld : Integer; (* The SOS segment identifier *)
RetCode : Integer; (* The SOS return code *)
End;

Function SOS_G Seg_ Numb (SegAddr : Integer; Var SegNumb, RetCode) : Boolean;

{

{

Returns the segment number of the segment, if any, that contains
the specified segment address.}

Input Values :
SegAddr : The segment address in question.
Output Values :

SegNumb : The segment number of the segment that contains the
specified segment address.

K{1) Pascal Technical Referen}ce Manual

¢

Sos Memory Mgt.--February 1, 1983 Version 1.1
RetCode ¢ An integer to contain the SOS return code (a zero means no
errors).

}

Function SOS_Rel Seg (SegNumb : Integer; Var RetCode) : Boolean;
{ Release the segment with fhe specified segment number, if any.}
{ Input Values :
SegNumb ' ¢ The SOS segment number.
Output Values :
RetCode : An integer to contain the SOS return code (a zero means no

errors).

}
{$ENDC}

SO'ASIO Pascal Code

¢

S0S Plus Calls-~February 1, 1983 Version 1.1

{ Additional SOS/Pascal support routines (these are NOT calls into SOS). }

{$IFC SOS_Plus_I0}
Function Up_Load (Var Char_Set) : Boolean;

{ Uploads the SOS character set from $CPP - $FFF into the 1024 byte buffer
which is supplied by the caller. }

{ Output Values :

Char_Set : a packed array [f..1023] of char which receives the current
SOS character set image.

}
Function At_Sign (Var Object) : Integer;
{ Returns the address of a Pascal variable as an integer. }
{ Input Values :
Object : The Pascal variable to be converted.
Returned Result :

The passed variable as an integer value.

}

{$ENDC}

32 Pascal Technical Reference Manual

¢

SOS Interface--February 1, 1983 Version 1.1

Implementation

{$IFC S0S_Device 10}

Function SOS D StatuS‘ External;
Function SOS D | Control External;
Function SOS_(Get D_Num; External;
Function SOS D_ Info* External;
{SENDC} B]

{$IFC sos_File 10}

Function SOS_Create; External;
Function SOS_Destroy; External;
Function SOS_Rename; External;
Function SOS_. " Set _Info; External;
Function SOS ! " Get Info, External;
Function SO0S_ Volume' External;
Function SOS_Set_?refix* External;
Function SOS_Get Prefix; External;
Function SOS_Open; External;
Function SOS_New Line; External;
Function SOS_] Read; External;
Function SOS S_Read; External;
Function SOS_| Write' External;
Function SOS_S_yrite' External;
Function SOS Close; External;
Function SOS_] Flush‘ External;
Function SOS_{ Get B Mark; External;
Function SOS_(Get B EOF' External;
Function SOS Set B | Mark External;
Function SOS_! Set B_] EOF External;
Function SOS_(" Get Matk‘ External;
Function SOS_Get_ﬁOF External;
Function SOS_Set Mark; External;
Function SOS Set_] EOF' External;
Function SOS_Set_Lev~ External;
Function SOS_Get_Lev; External;
{SENDC}

{$1IFC sOS_Utility I0}

Function SOS_S_Fence; External;
Function SOS G Fence; External;
Function SOS_¢ Set Time; External;
Function SOS Get ._Time; External;
Function SOS_(" Get Analog, External;
Function SOS_?erminate, External;
{SENDC}

{$IFC SOS_Memory Mgt}

Function SOS Request_Seg; External;
Function SOS_Find_Seg; External;
Function SOS_Change_Seg; External;
Function SOS_G_Seg Info; External;
Function SOS_G_Seg Numb; External;
Function SOS_Rel Seg; External;

SOSIO Pascal Code

¢

SO0S Interface--February 1, 1983 Version 1.1

{$ENDC}

{$1FC SOS_Plus_I0}

Function Up_Load; External;
Function At_Sign; External;
{SENDC}

Procedure SOS_Data; External;

End. { Of Unit SOS }

